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A straightforward explanation of the statistical technique of ruggedness testing is presented. Efficient 
P1ackett-Burman designs are used in ruggedness tests. These designs involve the simultaneous change oflevels 
of a number of variables. The designs allow the ruggedness test user to determine the effect of the separated 
variables on the measurement process. This paper (Part I) deals with the common situation where two-factor 
and higher order interactions can be safely ignored. A method is presented for evaluating the experimental 
uncertainties. A detailed example of glass electrode measurements of pH of dilute Hel solutions is used to 
illustrate ruggedness testing procedures. 
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Introduction 

The purpose of a ruggedness test is to find the factors 
that strongly influence measurement results, and to de­
termine how closely one needs to control these factors. 
Ruggedness tests do not determine optimum conditions 
for a test method. 

In the testing of a protocol, it is frequent occurence 
that the coordinating scientist is dismayed by the large 
variabilities observed between different laboratory re­
sults. The scientist may have developed the protocol 
being tested and has taken great care and pride in that 
development. His laboratory has documented "proof" 
of high precision and accuracy for the method. What 
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has gone wrong? How can the other labonitories get 
such wild results? 

A large part of the answer may be that the coordi­
nating scientist has been unrealistically consistent in his 
own laboratory work. He may have always used fixed 
equipment such as a furnace that was set at 60.0 ·C and 
that did not vary by more than ±0.5 ·C. Even though 
the furnace dial read 60.0 ·C, the furnace temperature 
may in reality have been 64.2 +0.5 ·C. the constant bias 
of 4.2 ·C did not affect his precision, but it may have 
affected his accuracy. Other constant errors will, like­
wise, not affect his precision. In regard to accuracy, 
these additional errors may partially cancel each other. 
It is the nature of protocol development that work will 
continue until the errors do cancel, and the "right" an­
swer is obtained. Thus, the laboratory that has devel­
oped the protocol will eventually show both good pre­
cision and accuracy. In an interlaboratory experiment, 
however, conditions are different. The other (individ­
ual) laboratories do not have the same biases, and the 
rather complete cancelling of systematic errors does not 
occur. Differences in laboratory conditions can result in 



large variabilities between different laboratory results. 
In frustration, the coordinating scientist may tighten the 
protocol specifications. One can see that if temperature 
is important, then even a tightened protocol specifica­
tion of 60.0±0.1 ·C will not be effective unless the bi­
ases between laboratories are eliminated. A true tem­
perature of 60.0±O.5 ·C may be quite satisfactory, but 
large biases cannot be tolerated. 

To work towards perfecting a test method one must 
first determine if a factor such as temperature is im­
portant, and then decide if a true +0.5 ·C tolerance is 
acceptable. Such matters are best investigated in a single 
laboratory rather than in multiple laboratories since, 
here, we are interested in the effect of changes in tem­
perature. A constant bias within a single laboratory will 
not interfere in the investigation of changes of tem­
perature. Other factors associated with the protocol 
must also be evaluated. How do we proceed? 

The coordinating scientist may believe that the proto­
col contains seven factors (variables) that could influ­
ence the measurement results. Suppose it is decided to 
investigate the effect of each factor at only two levels: at 
a high level and at a low level. A full factorial in­
vestigation of the seven factors at each of the two levels 
would require 27 = 128 measurements, and this does not 
include replicate measurements. Fortunately, one does 
not have to make this many measurements. One can use 
a class of experimental designs called Plackett-Burman 
designs [1].1 It is possible, by using these designs, to 
study up to N - 1 factors using only N measurements. 

A Mathematical Model 

A brief review of a mathematical model used to de­
scribe a measurement result may be helpful in under­
standing details that are associated with the use of 
Plackett-Burman designs. For simplicity, consider an 
experiment with only three factors at each of two levels 
(eight measurements). 

Y;jk=Y ... +Aj+Bj+Ck+ABij+ACjk+B~k+ABCijk 

where 

Yijk=a single measured value 
(i,j,k= 1,2- -the low and the high 
levels) 

Y ... =the overall average for all eight mea­
surements 

A" B;. ck=the estimated main effects (the main fac­
tors affecting the measurement results) 

1 Figures in brackets indicate literature references. 

4 

ABu, ACik , BC;k=the estimated two-factor interactions 
(systematic effects not explained by the 
main effects) 

ABCijk=the estimated three-factor interactions 
(systematic effects not explained by the 
main effects and the two-factor inter­
actions). 

There are some restrictions on the main effects and 
interaction terms in the model. The restrictions will not 
be given here since they only have to do with the "cen­
tering of the data" for the evaluation of the terms. In 
ruggedness testing we do not center the data about some 
midpoint, but rather redefme the effects as differences 
between the results at the high and at the low levels. We 
will also do away with the subscripts of the above 
model. We simply recognize that measurement results 
are affected by various main effects and interactions. 

From the general mathematical model one can infer 
that experiments with a larger number of factors will 
have a very large number of higher-order interactions. 
It is generally believed that main effects tend to be most 
important in describing (or controlling) the mea­
surement results, that two-factor interactions are less 
important, and that higher order interactions are even 
less important. Plackett-Burman designs are well suited 
for measurement processes that have negligible inter­
actions. 

Use of Plackett-Burman Designs 

The most common use of Plackett-Burman (PB) de­
signs with N measurements allows one to get the most 
important (main effects) information. With N mea­
surements, however, the N - 1 main effects are con­
founded with the two-factor and with higher order in­
teractions. If the interactions are relatively small, then 
we may be satisfied in making only N measurements and 
obtaining slightly contaminated estimates for the N - I 
main effects. Experience has tended to show that one 
gains more useful information by examining additional 
factors than by evaluating the interactions. 

Numerous PB-designs are available [1]. A PB-design 
for seven factors and eight measurements is given in 
table 1. A ( +) for a given factor indicates that the mea­
surement is made with that factor set at the high level, 
and a ( - ) indicates the factor is to be at the low level. 
All seven factors are set for each measurement and a 
single result is obtained from each of the eight mea­
surements. The measurements should be made in a ran­
dom order. Typical measurement results are shown at 
the far right of the design. Scanning down each column 
of the design one sees that there are equal numbers of 
( + ) and ( - ) factor settings. 



Table 1. A Plackett-Burman design for N=8. 

Factor 

Run A B C D E F G Reswts 

+ + + + 1.1 
2 + + + + 6.3 
3 + + + + 1.2 
4 + + + + Q,g 

5 + + + + 6.0 
6 + + + + 0.9 
7 + + + + 1.1 
8 1.4 

The effect of any factor such as A, for example, is 
simply calculated as the average of the measurements 
made at the high level minus the average of the mea­
surements made at the low level. 

Effect of A 

A(+) A(-) 
=l: 1'0,//2 -~ N/2 =2/NxfLA(+)-L4(-)}. (1) 

Effect of A 

=2/8X [(1.1 +0.8+0.9+ 1.1)-(6.3+ 1.2+6.0+1.4)}. 

=-2.75 

The PB-design (see table 1) is constructed such that 
the l:A ( +) and the LA ( - ) terms will each contain an 
equal number of B( +) and B( -) terms. Thus, the A 
effect is orthogona1, i.e., is not affected by the B effect. 
In the PB-designs all main effects (columns) are orthog­
onal to all other main effects (columns). This orthogo­
nality, however, does not extend to the interactions. The 
orthogonality of the main effects and the acceptance of 
a slight contamination of estimates for the main effects 
(by the interactions) are the major characteristics of 
ruggedness testing. For many practical problems this is 
all that is needed. 

For the PB-design, the standard deviation for an ef­
fect, such as A, is obtained by using eq (1) and the 
standard deviation of a single measurement cr. 

0- Effect.4 = 20"f'\/N (2 a) 

The same equations for the PB-design apply when the 
standard deviation u is replaced by a sample estimate, s. 

Se1fect A =2s rIN (2b) 

Two methods for determining a sample estimate of the 
standard deviation of II single measurement, s, will be 
presented. 

PB-Design Considerations 

Equation 2b shows that the standard deviation of an 
effect is inversely proportional to v'N, the number of 
measurements made. One is therefore tempted to use 
large PB-designs. Practical experience, however, favors 
moderate size designs. Ovedy large designs require the 
correct setting of too many factors, and this increases 
the chance for blunders. In addition, large designs re­
quire more time to complete and one becomes COn­
cerned that other factors not being considered in the 
design can change and distort the results. The effects of 
incorrect factor settings and of shifting experimental 
conditions are propagated into all of the calculated re­
sults (see eq 1). The above listed (N = 8) PB-design is a 
suitable size for most experiments. If more factors need 
to be studied, they can be handled by using a second 
(N = 8) PB-design. This latter procedure may even in­
volve the repeated testing of some of the more im­
portant factors from the first design. The (N = 8) PB­
design can also be conveniently used to study two-factor 
interactions (see Ruggedness Testing-Part II: Recog­
nizing Interactions). 
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In general, the size of all effects in a PB-design will 
increase with increased separation of the high and low 
factor settings. We have implicitly assumed that the 
main effects are linear. It seems prudent to only use 
moderate separations of the high and low settings so that 
the measured effects will be relatively linear and, at the 
same time, large relative to the measurement error. For 
the high and low settings of the factors it is suggested 
that one use the extreme limits that one may expect to 
observe between different qualified laboratories. 

Judging the Effects 

How can one judge if any of the estimated main ef­
fec·ts are too large? Since the main effects are expressed 
in the units of the measurement, one can simply make a 
direct judgment whether the change associated with a 
factor shift from a high level 10 a low level is too large, 
or not. Other, moce qnantitative methods of judgment 
which analyze the variance of measurements are given 
below. We should recognize that these quantitative 
methods still only give tentative answers and that 
follow-up or confirmatory experiments are frequently 
needed. 



If n auxiliary replicate measurements are available, 
one can estimate the within-laboratory measurement 
variability, s. A t-test (with n -1 degrees of freedom) 
can be used to judge if a main effect is statistically sig­
nificant relative to the measurement variability. Note 
that the n from the auxiliary replicate measurements will 
not generally be the same as the N of the ruggedness 
test. 

t _ effect A 
0-1- SeffectA 

Using eq 2b, this t-test can be written in the following 
form: 

calculated A 
to-1= 

2s/VN 
(3) 

Action should be taken if the effect of a factor is 
statistically significant, and if the size of the effect is of 
practical importance; we should then tighten the proto­
col specification for that factor. This will help reduce 
the interlaboratory variability. 

One may wish to repeat the complete PB-experiment 
so as to obtain better estimates of the factors and to get 
a current estimate of the within-laboratory measurement 
variability, s. In estimating the measurement variability 
one needs to guard against the occurrence of a possible 
measurement shift between the running of the two de­
signs. This can be handled mathematically. Let us now 
work through a real example. 

This ruggedness testing example deals with factors 
that may influence the determination of the pH in 
dilute acid solutions when measurements are made by 
use of a glass electrode. Table 2 gives the seven factor 
(N = 8) PB-design which was used. This convenient de­
sign was first suggested by F. Yates [2]. It was fre­
quently used by W. J. Youden [3] who did much of the 
pioneering work in ruggedness testing. 

The above Yates-Y ouden design can be obtained from 
the seven-factor PB-design of table 1 by relabeIIing the 
PB-columns A-G to read C, F, G, D, E, B, A, and the 
PB-rows 1-8 to read 2, 3, 5,4, 7, 8, 6, and 1. One then 

Table 2. The seven-factor PB design. 

Factor 

Run A B C D E F G 

2 + + + + 
3 + + + + 
4 + + + + 
5 + + + + 
6 + + + + 
7 + + + + 
8 + + + + 
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rearranges the columns and rows to be in the usual 
alphabetic and numeric order. The above operations are 
perfectly acceptable since the assignment of column and 
row labels is arbitrary and the rearrangement of the 
columns and rows has no effect on the overall arithmetic 
operations. Such rearrangements are, in fact, one means 
of randomizing the assignment of variables. 

A number of pH measurement experiments were run 
using six different dilute acid solutions. For simplicity of 
presentation, Part I discusses only the results from one 
of the solutions, an HCI solution with a known pH of 
2.985. Subjects of more involved PB-testing and com­
parisons between the different acid solutions are de­
scribed in Part II. The seven factors that were studied 
are listed below. The first listed level for each factor has 
been arbitrarily assigned the positive sign in the above 
table. 

A. Temperature: 25 DC or 30 DC. 
B. Stirring during the pH measurement: Yes or No 
C. Dilution (0.5 mL distilled H20/20 mL of 

solution: 
Yes or No 

D. Depth of electrode immersion: 1 cm or 3 cm be­
low liquid surface 

E. Addition of NaN03 (0.033 moI!L of solution): 
Yes or No 

F. Addition of KCI (0.067 moI!L of solution): 
Yes or No 

G. Electrode equilibration time before reading the 
pH: 10 or 5 minutes 

The above i~ only a partial list of factors that will change 
the observed value of the pH. Obviously, all other fac­
tors that are not listed above need to be kept constant. 
The particular, constant levels of these other factors will 
result in some specific offset in the pH measurements. In 
the ruggedness test, however, this fixed offset need not 
concern us since we are only interested in the mea­
surement changes (the effects) that occur when the 
above seven factors (A - G) are changed. 

Results from the ruggedness test are given in table 3. 
The complete experiment was also repeated on a second 
day. A different random order of measurement was used 
for each day. The two sets of measurement results are 
given at the far right of the design. 

For the first set of the above reported measurements, 
the effect of factor A is calculated from eq 1 as the 
difference of the average value when 25 DC is used and 
the average value when 30 DC is used, i.e., 
(2999 + 3055 + 3049 + 2949)/4 - (2904 + 3015 + 3006 + 
2964)/4=3013-2972= +41. The averages and differ-



Table 3. Design and test results. 

Factor Observed pH 
A B C D E F G (milli·pH units) 

30 N N 3 N N 5 2904 2895 
30 N Y 3 Y Y 10 3015 3017 
30 Y N N Y 10 3006 2990 
30 Y Y Y N 5 2964 2935 
25 N N Y N 10 2999 2983 
25 N Y 1 N Y 5 3055 3053 
25 Y N 3 Y Y 5 3049 3044 
25 Y Y 3 N N 10 2949 2949 

Average 2993 2983 

ences of the averages (the effects) are given for factors 
A - G in the third and fourth columns of table 4. Similar 
calculations for the second set of measurements are 
given in the fifth and sixth columns of the table. 

Testing the Effects From Repeated 

(pH) Experiments 

Generally good agreements are observed between the 
calculated effects from the two sets of measurements. 
Effects A, D, E, and F are relatively large and are of 
interest. The average C effect is (6+ 11)/2= + 8.5. To 
help decide if the C effect value is real, or if it might 
simply be due to imprecisions in the measurements, let 
us make at-test. 

t= 
effect of avg. C 

S effect of av g. C 

Table 4. The effects for factors A - G . 
(milli-pH units) 

First Data Set Second Data Set 
------------ ------------ Differences (d) 

Factor Level Average Effect Average Effect betw. effects 

A 25 3013 3007 
A 30 2972 +41 2959 +48 -7 

B Y 2992 2980 
B N 2993 -1 2987 -7 +6 

C Y 2996 2989 
C N 2990 +6 2978 +11 -5 

D I 3006 2990 
D 3 2979 +27 2976 +14 +13 

E y 3007 2995 
E N 2979 +28 2972 +23 +5 

F Y 3031 3026 
F N 2954 +77 2941 +85 -8 

G 10 2992 2985 
G 5 2993 -I 2982 +3 -4 

Since the estimate for each effect is now the average of 
two experiments the t-test, derived in the form of eq 3, 
must be modified as follows: 
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t calculated avg. C 

2sN2N 
(4) 

The estimate of the standard deviation, s, and the associ­
ated degrees of freedom for the t-test are obtainable 
from our measurements; Since the two sets of mea­
surements were run on different days, we should be 
concerned that one set of measurements could be offset 
relative to the other set. Let us therefore calculate the s 
value by a method that is not vulnerable to an offset 
between the two sets of measurements. 

We first note that an offset between the sets of mea­
surements will not influence the values of the calculated 
effects. Let us therefore consider the differences be­
tween the effects as calculated for the above example 
(see table 4, column 7). Since we are considering the 
same effects from the two sets of experiments, the statis­
tically expected values of the differences between the 
effects are zero. The variance of the difference is there­
fore the expected value of the squared differences. 

Variance of (d) = Expected value of (d 2
) 

::::::~d2/(N-l) (5) 

An estimate of the expected value of (d 2
) is obtained by 

simply averaging the squares of the differences listed in 
table 4, column 7. Our calculated estimate is 
384/7=54.9. 

We next note that the variance of the difference (be­
tween the duplicated effects) is the sum of the variances 
of the two effects. The variances of the two effects 
should be the same since the two sets of experiments 
were done in the same laboratory. Equation 2b de­
scribed the sample estimate for the square root of the 
variance of an effect. Therefore: 

Estimated variance of (d) = 4s2/N +4s2/N = 8s2/N. (6) 

By combining eqs (5) and (6) and rearranging we 
obtain an estimate of the standard deviation of a single 
measurement that has N -1 degrees of freedom associ­
ated with it. 

s =v'[~d2/(N -1)] XN/8 (7) 

The desired t-test is obtained by combining eqs 4 and 7. 
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